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ABSTRACT

Several local edge detection operators were applied

to a set of ERTS pictures of the Monterey, Calif. area.

Gradient operators performed consistently better than

Laplacian operators in detecting edges. It was also found

that if a grayscale normalization operation, "histogram

flattening," was applied to the pictures first, the edge

detector output.s were greatly enhanced. The use of inter-

polation for more accurate location of edges on a digital

picture was also briefly investigated. Curve detection

operators were applied to the edge detector outputs; this

had the effect of enhancing the edges while suppressing

noise.
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1. Gradients

The classical method of detecting edges -- i.e.,

abrupt changes in gray level -- in a picture is to apply

an isotropic derivative operator such as the magnitude of

the gradient

(af + (f )2

or the Laplacian

32f + 2f+2  ay2ax y

to the given picture f [1]. For digital pictures, many

different approximations to the gradient and Laplacian,

based on differences rather than derivatives, have been

used. One of the simplest examples is the "Roberts gra-

dient," defined as

max(If ij-fi+l,j+ll fi+l,j-fi,j+l )

where fij is the gray level at (i,j). This uses first

differences in the two diagonal directions, and takes their

max rather than square root of sum of squares; it is an

1 1
approximation to the gradient at (i + 2' j + 2 ).

A useful approach to the design of digital gradient

operators is as follows [2]: We fit a polynomial or other

standard function to the gray levels in a specified

neighborhood of each point (i,j). The gradient of the

fitted function at (i,j) can be expressed in terms of the
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coefficients of the function, which in turn can be ex-

pressed in terms of the gray levels at (i,j) and its

neighbors. Thus, for any choice of neighborhood size and

fitted function, we can define a digital gradient operator.

Suppose, for example, that we use a 3-by-3 neighbor-

hood of (i,j), and that we least-squares fit a second-

degree polynomial in x and y to the nine gray levels

i-l,j+l fi,j+l i+l,j+l

f f. fi-l,j 13 i+l,j

fi-1,j-1 fi,j-1 i+l,j-1 .

Then it turns out that the gradient of this polynomial at

(i,j), expressed in terms of the f's, is

max[Ifi-l,j+l+fi,j+l+fi+l,j+l-fi-l,j-l-fi,j-l-fi+1,j-1

I i-1,j+l+f i-1,j +fi-1,j-1 -fi+l,j+-fi+,j- fi+l,j-1 1]

We can express this more concisely by displaying the co-

efficients of the f's in the two components of this gradient,

namely

1 1 1 1 0 -1

0 0 0 and 1 0 -1

-1-1 -1 1 0 -1

We can similarly express the components of the gradient at

1 1(1 + 2' j + 1), based on fitting a second-degree surface to

1 1
a 4-by-4 neighborhood centered at (i + 2, j + ); they are
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3 3 3 3 3 1 -1 -3

1 1 1 1 3 1 -1 -3
and .*

-1 -1 -1 -1 3 1 -1 -3

-3 -3 -3 -3 3 1 -1 -3

Several of the gradient operators just described were

applied to four windows (127 by 127 points each) taken from

an ERTS 1 picture of the Monterey, Calif. area. Figures

1-4 show, respectively, the original pictures, their Roberts

gradients, and the gradients based on second-degree least-

squares fitting to 3-by-3 and 4-by-4 neighborhoods. The re-

sults, displayed on the same 0-63 gray scale as the original

pictures, are very weak. They can be improved by rescaling,

as in Figure 5, which shows the 4-by-4 gradient rescaled

so that its highest values are now 63. However, if we re-

scale each gradient output individually, we can no longer

make legitimate comparisons among the different gradients.

A different method of enhancing the gradient results will

be described in Section 2.

* Similarly, for a 5-by-5 neighborhood centered at (i,j) we get

4 4 4 4 4 4 2 0 -2 -4

2 2 2 2 2 4 2 0 -2 -4

0 0 0 0 0 and 4 2 0 -2 -4

-2 -2 -2 -2 -2 4 2 0 -2 -4

-4 -4 -4 -4 -4 4 2 0 -2 -4
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2. Histogram flattening

Much better edge detection results are obtained from

our gradient operators if we apply a contrast enhancement

operation, known as histogram flattening, to the pictures

before we compute their gradients. The operation is de-

signed to make each gray level in the enhanced picture

occur equally often.

For an n-by-n picture that has m gray levels,

we proceed as follows: Let SO be the n2/m points of the

original picture f whose gray levels are lowest; say these

points have levels 0, 1,...,k 0, where k0 - 0. Then all

points of f that have gray levels 0, 1,...,k 0-1 get gray

level 0 in the new picture f. In addition, just enough

points of f that have level k0 are given level 0 in f, to

make up the desired total of n2/m. These points can be

chosen randomly; or we can rank the points having level

k0 according to the average gray levels of their neighbors,

and choose the ones for which this average is lowest.

Next, let S1 be the n2/m points of f having next lowest

gray levels, say, k0 , k0+l,...,kl, where k1  k0 . We give

these points level 1 in f, resolving ties as just describ-

ed. The process continues with S2,...,Sm; at the last

step, the n2/m points of f that have the highest gray levels

are given level m in f.

The results of performing this operation on the pic-

tures in Figure 1 are shown in Figure 6. It is seen that

an increase in overall contrast has resulted. This is be-
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cause most of the points in the original pictures had gray

levels in the middle of the gray scale; the flattening

operation had to "stretch" these in order to fill up the

high and low levels on the new picture.

When the gradient operators described in Section 1

are applied to the histogram-flattened pictures, the re-

sults are much more pleasing, as shown in Figures 7-9.

Note that for the upper left window, the results are not

as good as those in Figure 5; this is probably because this

window had heavily occupied high and low gray levels to be-

gin with. Note also that the operators based on larger

neighborhoods yield thicker edges; this is because a

larger neighborhood responds to the presence of an edge

over a wider range of positions.
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3. Laplacians and other derivatives

The most commonly used class of digital approxima-

tions to the Laplacian are operators of the form

If(s)-f (r), where f(k) denotes the result of locally

averaging f over a k-by-k neighborhood at each point.

Figures 10-11 show the output of If(3)_-f(1)I for the

original Figure 1 and for its histogram-flattened version

(Figure 6). As before, the latter results are much better.

Figures 12-13 show analogous outputs for If(5)-f(3) ; as

we might expect, the edges are thicker for this coarser

operator.

It is evident that the Laplacians are not as good edge

detectors as the gradients for these pictures. This is be-

cause the edges in the pictures are step edges, to which

the first-difference components of the gradient respond

strongly. The Laplacians, on the other hand, being basic-

ally second-difference operators, respond better to spots

than to step edges.

Although the Laplacian is not a very good edge detec-

tor, it can be used in conjunction with a coarse gradient

to obtain thinned edges. This is because the Laplacians

have their high values at the tops and bottoms of step (or

ramp) edges, while the gradients yield peak values at the

steepest points of the edges. Thus if we subtract the

Laplacian from the gradient, and set negative values to

zero, the gradient values should be suppressed at the tops

and bottoms of edges, and preserved only right on the
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edges. This effect is illustrated in Figure 14, which is

the gradient 1 Laplacian of Figure 6.

The gradients defined by surface-fitting in Section 1

give less weight, at the point (i,j), to the closer

neighbors of (i,j) than to its more distant neighbors. To

detect abrupt edges, one probably wants to use the opposite

kind of weighting: high for near neighbors, lower for

farther ones. Interestingly, this type of weighting can

be observed by smoothing the picture before computing the

gradient. For example, suppose that we smooth by averaging

over a 3-by-3 neighborhood at each point, so that we

obtain a new picture in which

fij = fi-l,j+l +fi,j+l+fi+l,j+l +fi-l,j+f ij+fi+l,j +fi-lj-

+f. +flj-

If we apply to f the gradient based on surface fitting to

a 5-by-5 neighborhood, we can express the result in terms

of a 7-by-7 neighborhood in f, with relative weights

2 3 3 0 -3 -3 -2

4 6 6 0 -6 -6 -4

6 9 9 0 -9 -9 -6

6 9 9 0 -9 -9 -6

6 9 9 0 -9 -9 -6

4 6 6 0 -6 -6 -4

2 3 3 0 -3 -3 -2

for the horizontal difference, and similarly for the verti-

cal difference. The averaged version of the upper left
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quadrant of Figure 1, using a 3-by-3 averaging neighbor-

hood, is shown in Figure 15a; the gradients based on 3-by-3,

4-by-4, and 5-by-5 surface fitting, applied to the averaged

picture, give the results shown in Figures 15b-d.
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4. Interpolation

Our use of digital gradient operators based on inter-

polating continuous surfaces through the digital picture

points suggests an important related question: Given a

digital picture, can we locate the edges in the original

scene to an accuracy greater than one digital picture point,

using some type of interpolation?

To illustrate this problem, we have taken a 16-by-16

point piece of Figure 6, and blown it up to 64-by-64 in

three ways, which are shown in Figure 16:

a) Each point is simply copied 16 times, creating a

4-by-4 square of constant gray level.

b) The points are copied into every fourth position

(horizontally and vertically) in the blown-up

picture, and gray levels are assigned to the inter-

mediate points by linear interpolation, first in

x, then in y.

c) Similar to (b), except that cubic spline inter-

polation is used.

In the latter two cases, the blown up picture is only 61-

by-61, since no extrapolation was performed.

We can now compute gradients, e.g., the 3-by-3 gra-

dient, for blowups (b) and (c); the resulting edges, shown

in Figure 17, can be regarded as interpolated between the

points of the original 16-by-16 piece of picture. It

appears that the spline technique gives edges that are more

detailed and more sharply defined. Unfortunately, time did

not permit further work on this approach.
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5. Curve detection

As pointed out some years ago [3], one way to enhance

the output of an edge detection operation is to apply curve

detectors to it, since true .region edges should be composed

of curves, whereas noise output would not tend to lie on

curves. It was also pointed out that still further noise

suppression can be obtained by iterating the curve detec-

tion operation, since the true curve detector output should

consist of curves, while the noise should not.

A simple curve detection operator can be defined as

follows [3]: At each point (i,j), we compute the average

gray level in a small neighborhood, and compare it with

the averages in adjacent, nonoverlapping neighborhoods on

both sides, in some direction 0. Suppose that the average

at (i,j) is greater than both adjacent averages in direc-

tion 8, by at least some amount t, and that the same is

true for nearby points on each side of (i,j) in the direc-

tions 8 + . Then a line or curve of slope 0 + must22

pass through (i,j), since at both (i,j) and nearby points

in that direction ("along" the curve), we have a "thin"

locus of points whose average gray levels are at least t

higher than their neighbors in the perpendicular direction

("across" the curve). Of course, this must be tested for

many possible directions 0, unless we know in advance what

slopes will be present. The detector output is the max,

over all directions, of the average of the differences

between the neighborhood averages and their adjacent
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neighborhood averages,

This method of curve detection, using a 2-by-2 neighbor-

hood at each point, was applied to the outputs of the gra-

dient 1 Laplacian operator (Figure 14) for two of the quad-

rants of Figure 6. The results, for t = 1, 2, and 3, are

shown in Figures 18, 19, and 20, respectively. (These re-

sults have all been rescaled to improve their visibility.)

Some noise survives when we threshold at 1, but some edges

begin to break up when we threshold at 3. Much noiser re-

sults are obtained when we use single points rather than

2-by-2 neighborhoods; these results, for t = 1, 2, 3, are

shown in Figures 21-23.

The results of iterating the 2-by-2 curve detection

scheme for one of the.quadrants are shown in Figures 24

(t = 1 at each iteration), and 25 (t = 2). The second and

third iterations suppress more of the noise, but some edges

survive that were suppressed when we simply took t = 3

without iterating.
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6. Conclusions

Several useful conclusions were derived, or reconfirmed,

from this study:

1) Histogram flattening is a useful preprocessing

operation for enhancing edge detector output.

2) Gradients perform better than Laplacians as edge

detectors. However, subtracting a Laplacian from

a coarse gradient can yield thinner edges.

3) Linear or spline interpolation can be used to

locate edges to an apparent accuracy of better

than one picture point.

4) Curve detection, possibly iterated, is a useful

postprocessing operation for enhancing edge de-

tector output.

Of course, these conclusions can only be accepted as valid

for the limited class of pictures used in the study. To

extend their validity to other cases, further study would

be needed.
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List of Figures

1. Input pictures: four 128-by-28 windows from an ERTS-1

Band 7 picture (1002-18134) of the Monterey, Calif.

area.

2. Roberts gradients of the pictures in Fig. 1.

3. Gradients of the pictures in Fig. 1 based on fitting a

second-degree surface to a 3-by-3 neighborhood at each

point.

4. Analogous to Fig. 3, but using a 4-by-4 neighborhood.

5. Result of rescaling Fig. 4 to the range [0, 63].

6. Results of performing histogram flattening on Fig. 1.

7-9. Results of applying the gradient operators of Figs. 2-4

to Fig. 6 rather than Fig. 1.

10. Digital "Laplacians" If(3 ) - fl for the pictures in

Fig. 1.

11. Same for the enhanced pictures in Fig. 6.

12-13. Analogous to Figs. 10-11, but using If(5 ) _ f(3)1.

14. Result of subtracting the Laplacian If(3 ) - fl from

the 3-by-3 gradient; edges are thinner than those in

Fig. 8.

15. (a) Result of 3-by-3 averaging of one of the pictures

in Fig. 1. (b-d) Results of applying 3-by-3, 4-by-4,
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and 5-by-5 gradients to (a).

16. Magnifications of a 16-by-16 piece of Fig. 6: (a) By

copying the points (=zero-order interpolation); (b) By

linear interpolation; (c) By cubic spline interpolation.

17. Results of applying the 3-by-3 gradient to Figs.

16 (b-c).

18-20. Results of applying a curve detection operation, using

2-by-2 neighborhoods, to two quadrants of Fig. 14, with

a difference threshold t equal to 1, 2, and 3, respec-

tively.

21-23. Analogous to Figs. 18-20, but using single points rather

than 2-by-2 neighborhoods.

24. Results of iterating the 2-by-2 curve detection opera-

tion of Fig. 18 on one quadrant: (a) twice, (b) three

times.

25. Analogous to Fig. 24, for the operation of Fig. 19.
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Fig. 12 Fig. 13
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Fig. 21 Fig. 22 Fig. 23
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